skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Atzberger, Paul J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We develop data-driven methods incorporating geometric and topological information to learn parsimonious representations of nonlinear dynamics from observations. The approaches learn nonlinear state-space models of the dynamics for general manifold latent spaces using training strategies related to Variational Autoencoders (VAEs). Our methods are referred to as Geometric Dynamic (GD) Variational Autoencoders (GD-VAEs). We learn encoders and decoders for the system states and evolution based on deep neural network architectures that include general Multilayer Perceptrons (MLPs), Convolutional Neural Networks (CNNs), and other architectures. Motivated by problems arising in parameterized PDEs and physics, we investigate the performance of our methods on tasks for learning reduced dimensional representations of the nonlinear Burgers Equations, Constrained Mechanical Systems, and spatial fields of Reaction-Diffusion Systems. GD-VAEs provide methods that can be used to obtain representations in manifold latent spaces for diverse learning tasks involving dynamics. 
    more » « less
    Free, publicly-accessible full text available September 1, 2026
  2. MLMOD is a software package for incorporating machine learning approaches and models into simulations of microscale mechanics and molecular dynamics in LAMMPS. Recent machine learning approaches provide promising data-driven approaches for learning representations for system behaviors from experimental data and high fidelity simulations. The package facilitates learning and using data-driven models for (i) dynamics of the system at larger spatial-temporal scales (ii) interactions between system components, (iii) features yielding coarser degrees of freedom, and (iv) features for new quantities of interest characterizing system behaviors. MLMOD provides hooks in LAMMPS for (i) modeling dynamics and time-step integration, (ii) modeling interactions, and (iii) computing quantities of interest characterizing system states. The package allows for use of machine learning methods with general model classes including Neural Networks, Gaussian Process Regression, Kernel Models, and other approaches. Here we discuss our prototype C++/Python package, aims, and example usage. The package is integrated currently with the mesocale and molecular dynamics simulation package LAMMPS and PyTorch. 
    more » « less